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The longitudinal electrical conductivity of metal
matrix composites at cryogenic temperature in
the presence of a longitudinal magnetic field
PART 2 Application of the solution to metal matrix composites
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In this paper we use the results of Part | to derive two integral expressions for the electrical
conductivity of metal matrix composite materials when a magnetic field, B, is added to a small
electric field also parallel to fibres. One expression applies to strong magnetic fields meaning
R,/a < 1, where R, = m*v./eB when the Fermi velocity is perpendicular to the magnetic field.
When B — oo, the integral expression reduces to the well known conductivity value

o = a,(1 — V), where g, is the bulk matrix conductivity and V; is the fibre volume fraction. For
weak magnetic fields, R,/a > 1, then the electrical conductivity is expressed by the sum of
two integrals. When B — 0, the electrical conductivity reduces to the integral expression
obtained in our earlier results when there is only a longitudinal electric field. In this paper we
correct an incorrect derivation of the composite conductivity in the absence of a magnetic
field published earlier [J. Mater. Sci. 21 (1986) 2409].

1. Introduction

This is the second part of two papers on the effects of
magnetic fields on the electrical conductivity of metal
matrix composite (MMC) materials. The electric and
magnetic fields are assumed to be parallel to the fibres.
In the first paper [1], we found the solution of the
Boltzmann equation for the case of cylindrical fibres.
It was assumed that the scattering regions for adjacent
fibres do not overlap.

In the present paper we construct an integral
expression for the electrical conductivity of MMC
materials. This expression is based on the solution of
the Boltzmann equation discussed before [1], and is
shown to have the appropriate behaviour in the limit,
that is, for very large magnetic fields the conductivity
goes to the bulk value. This follows from the fact that
at extremely high magnetic fields the radius of curva-
ture of the electron trajectories is extremely small so
that the scattering effect of the fibres is negligible. For
very small magnetic fields, the expression for the elec-
trical conductivity in the presence of an electric field
only is recovered. This follows from the fact that the
very small magnetic fields have a negligible effect upon
the electron trajectories.

To find the electrical conductivity we need to inte-
grate at each point in the metal matrix over all possible
directions of the velocity. The possible trajectories are
those for which the electron paths emerge from the
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fibre surfaces. In essence, this will determine the limits
of the integrations to be performed, which is the main
task described in this paper. The integration over all
possible velocity directions is done first by integrating
over the azimuthal angle ¢ and then over the polar
angle 0, that the velocity makes with the fibre axis
(z-axis). For a given magnetic field the radius of curva-
ture of the electron trajectories in the plane transverse
to the fibres depends on the angle 6. Then for a given
radius the possible value of ¢ are determined by tan-
gency conditions of the circular trajectory and the
fibre. In the next section we study these tangency
conditions. In this paper, we use the same notation as
we used in Part T [1].

2. The solution of the Boltzmann
equation and the tangency
conditions

In Part I we showed that the solution of the Boltzmann

equation, when a longitudinal magnetic field is

present, is

F' = A{l — e7¥7} (N
where A is constant, w, is the angular frequency of the
electrons when the magnetic field is present and t is the

relaxation time, and F' is the change in the equilib-
rium distribution function. The expression for ¥ was
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Figure 1 Trajectory of electrons scattered from fibre surface when
r, > a. (In this, and all subsequent figures unless otherwise stated,
the magnetic field is directed into the paper.)

found to be ¥y = o — §, where

o =

sin! Dol
@ 4+ )@+ D+ 2wy, + 03]
(2a)
5 =
sin-! o[ (@ + v}) — (rv, + o — )]
(@} + v3) (¥} + o5 + 2wyrv, + 0}
(2b)

where a is the fibre radius. The angle ¥ is shown in
Fig. 1. The radius of the electron trajectory is r, with

2 sino 3)

@y

ro =

where 0 is the angle between o and the z-axis [1].
Two cases must be distinguished: r, < a and
ro > a.

2.1.Casery, < a
From Fig. 2 the tangency condition follows at once,
namely 2 = (r, + a)* = ¥ + 3 + 2rr, sin ¢y

sin ¢y = _l(rz—az)‘kg. 4)

2 rry r

Writing ry = (o} + v})"*/w, and sin ¢; = v, /(07 +
;)" it can be checked easily that Equation 4 is equi-
valent to the vanishing of the numerator in the second
term of the second Equation 2 (the angle 6 = 0).
Now as Fig. 3 shows we can also have another
tangency angle ¢ for a given point P in the metal such
that sin ¢; = sin ¢y and cos ¢ = —cos ¢y, that is,
¢+ corresponds to v, > 0 and ¢5 to v, < 0. The two
velocities corresponding to ¢ and ¢7 are symmetrical
with respect to the vertical line passing through P. The
shaded area, shown in Fig. 3, is the region of inte-
gration for ¢. For any angle ¢ within the shaded
region we obtain trajectories that originate at the fibre.

Figure 2 Trajectory of electrons scattered from fibre surface when
< a

¢T (U-t > D)

Figure 3 Symmetry conditions for scattering events tangent to fibre
surface.

Equation 4 for ¢ gives ¢ = 0 at r = Ja(2r, + a),
sin g > O fora < r < [a(2r, + a)]'* and sin ¢ < O
for [aQ2ry + @))? < r < 2ry + a. At r =2ry + a
we obtain ¢ = ¢7 = 3n/2. These results are shown
in Fig. 4. For r > 2r, + a, the trajectory does not
intersect the fibre and ¢ = oo, and thus produces no
change in the bulk distribution function (Equation 1).

For a given radial distance r, there is a relation
between ¥ corresponding to ¥ = (v, v,) and ¥’
corresponding to 97 = 9(~—wv,, v,).

This is shown in Fig. 5. We have that ¢ =
2(m — 8) — W, and ¥ = ¢ ~ &, then,

W= 2t — (0 + 8) ()

This is a useful relation allowing us to integrate ¢
from ¢ = —7/2 t0o ¢ = ¢y only.

2.2. Caser, > a
From Fig. 6, we see that we have two possibilities for
the tangency condition: r, = r, + a or (r, + a)’ =

P 4 e+ 2rry sin ¢,
1/¥ -4 a
—_ + =
2( rry > ~ ©)

This occurs when a < r < 2r, — a, because then
sin ¢r, < 1ascan be readily verified from Equation 6.
When 2ry — a <r < 2ry + a, then only ¢y, is
allowed. As in the case of r, < a, we can also have
another tangency angle ¢7, such that sin ¢7, =
sin ¢, and cos @3, = —cos ¢r,. Equation 6
for ¢r, gives ¢ =0 at r = [a(2r, + a)]'?,
sin g, > Ofora < r < [a2ry + a)]'?, sin pr, < 0
for [a@@ry + @] < 2r,+a. At r =2+ a
we have @7, = ¢, = 3m/2. At r = 2, — a we
have sin ¢; = —1. Consequently, for the range
a < r < 2ry — awe obtain two disconnected regions
of integration for ¢ as shown in Fig. 7, and for the
range 2ry —a < r < 2ry + a there is only one
region. Moreover, for a < r, < 3a/2, we have that
2ry — a < [a(2ry + a)]'?, and for 3a/2 < r, we have
that [a(2r, + a)]'"* < 2r, — a. All these results are
shown in Fig. 7.

Fig. 8 shows the disconnected regions of trajectories
that originate at the fibre. The situation depicted
corresponds tor < 2r; — a. Figs 9a and b show what
happens when r = 2ry — g and the cases a < ry <
3a/2 and 3a/2 < ry, respectively, At this value of r the

4003

sin ¢r,



"- a.(l\r‘ +a)

AR

APl P

77 ’

I RAPREYS

T L qs‘f 4).

T

s¢1_

Figure 4 Regions of integration for ¢ as the point P moves away from the fibre surface and r, < a.

two disconnected integration regions become one.
Finally, Fig. 10 shows the general situation when
r> 2ry — a.

The symmetry found for the case r, < a also
applies to the case when r, > a. Therefore, we need
only integrate ¢ from —=x/2 to ¢.

3. Composite conductivity
Fig. 11 shows a cell in which fibres at four corners
represent a well ordered array. This applies to metal
matrix composite materials in which the fibres have a
relatively large diameter (approximately 0.013 to
0.038 cm), whereas small diameter fibres (approxi-
mately 10 um) are randomly distributed in a plane
normal to their longitudinal axis. These array vari-
ations are a consequence of material processing which
is different for large than for small fibres. In the
following analysis we consider only well ordered fibre
arrays as shown in Fig. 11, and an extension to other
types of arrays has not been made. From Fig. 11, we
note that the distance between two nearest fibres is D.
We assume that the mean free path A for scattering in
the bulk metal is such that A < D/2. In this way there
is no overlap between adjacent scattering regions and
we can invoke cylindrical symmetry around each fibre.
We denote by A, the area of the bulk metal not
affected by the scattering from nearby fibre surfaces.
We denote by A, area of the scattering region centred
on fibres and within a cell. Then we have

Acell = Ab + Asc + naZ (7)

which assumes that 4, = n(rZ — &*) and Ay =
(D + 2a)’, where r,, is the radius of the scattering
region shown in Fig. 11. Now if j, denotes the current
density in the bulk within a scattering region then the

Figure 5 Symmetry conditions for scattering events that are non-

tangential to the fibre surface.
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total current within a cell is

I= ["Lh— AjO22r dr + jody, (8

and the conductivity of the cell is then
I/EAcell (9)

g =

where E is the applied longitudinal electric field. If g,
is the conductivity in the bulk area then j, = oo E. It
then follows that

[e2 Asc + Ab l 'sc Aj (r)
— = 23] — 2nr d
Oy { Acey } { A, + Abf Jo ’

(10a)

Using the values for 4., 4, and A4, we obtain

g 1 « Aj(r) }
—=(1 = V)<l — 2nr dr
Oy ( 2 { 1 = Vo)A L Jo

(10b)

Next, we introduce spherical polar coordinates in
velocity space

v, = v sin §cos ¢ (11a)
v, = vsinfsin ¢ (11b)
v, = vcos . (11c)

Then, the Equations 2 for the angles a and ¢ that
define Y via Yy = a — J, become

= sin™!

a
W,r COS ¢
(v? sin*0 + 2w,rv sin 0 sin ¢ + wir*)'?
(12a)

Figure 6 The tangency conditions when a < r < 2ry — a with
Ty > a.



|
1
|
!
T

Figure 7 Regions of integration for ¢ (a)
E when a < ry, < 3a/2 and (b) when
| 3a/2 < ry.

]. r=2rp+a

|
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|

ﬂ

{a ) ‘ﬁ— 4’1—

r=lal2ry+al

Y

]1/2

{b) - : r=

1

5 =

wo{@?v?sinf — [rosin Osin + Loy (¥ — @)}
vsin 8(v?sin 6 + 2wyro sin 8 sin ¢ + wir’)'’
(12b)

The solution, Equation 1, to the Boltzmann equation
can be written in the form

ekt OF° R
F' = P {1 —exp<— /0\‘/’>} (13)

where e is absolute value of the charge of the electron,
E is the electric field, m* is the electron effective mass,
7 is the relaxation time, and F' is the change in the
equilibrium distribution function F°, and where
A = vrand R, = v/w,. The radius of r;is the circular
path described by the electron on the plane perpen-
dicular to the fibre or r, = R, sin 8, and Ry is the
length of the actual helical path described by the
electron.
The expression for Aj(r) is [2]

sin”

*\
Aj(r) = 2e(ﬁ;l—> ;" o* dv [ sin 0 do [ AF'v, dg
(14)
where
eEt OF°
AFY = S5 5o P <‘ %l/{) (13)

and the limit of integration for # and ¢ integrals will
be determined in the next section.
The expression for j, is given by

. m* ’ o, T, 21
Jo = 2e (—h—> fo v* do jo sin 8 df jro v, Fy d¢
where

= I
m* Ov,

Fi eEt OF°

is the solution to the Boltzmann equation in the region
outside the scattering region. Proceeding as discussed
elsewhere [2], we have

. m*\ [ eEt\ 4
b= () (5 )5

(16)

where v; is the Fermi velocity, and the expression for
Aj(r) is [2]

) m*\ (eEt\ ;¢ 20 sin 0 d6
Aj(r) = 2e s sy vFJcos sin

X J exp <— R%W> d¢

with A = vp7. We can calculate the ratio Aj(r)/j,
from Equations 16 and 17, to give

(17

A_J]:_Q _ %jcoslesinedejexp<~ 5’% dé
(13)

and substituting Equation 18 into Equation 10b, gives

) 3 s

R I e i AL

x [ cos6 sin 6 do [ exp (~ T) d¢  (19)

Figure 8 The shaded areas are the regions of integration of ¢ when
a<r<2ry—a
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Figure 9 The shaded areas are the regions of integration of ¢ (a) when r = 2ry — a and a < ry < 3a/2, and (b) when r = 2ry — g and

302 < 1.

Equation 19 gives the electrical conductivity of
metal matrix composite materials in the presence of an
electric and magnetic fields aligned parallel to the
fibres. The next step is to compute the limits of inte-
gration of the integrals over 6 and ¢, to which we shall
return shortly.

3.1. Composite conductivity without
magnetic field

It was shown elsewhere [2] that in the absence of a

magnetic field Equation 19 can be written in a dimen-

sionless form using the following variables: x = r/a,

k = 2a/A,

S a=-mii-qg- _ na

;= U V){ O =PNa—na,
x <%) jl'””‘x dx j;"zf(e) a0
xf”anwnw} (20)

Figure 10 The shaded area in the region of integration of ¢ when
r>2r) —a.
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where p is a scattering parameter to account for the
effects of electrons scattering from fibre surfaces [2].
This parameter is set equal to zero because micro-
structural examination of the fibre surface shows that
it is irregular compared to the lattice dimensions.
Consequently, electrons are scattered diffusively. In
Equation 20,

f(B) = cos*fsin 0 @n
and
k
hix, 8 = —_
(x, 8, @) exp { > sin 0 [x cos ¢

— (1 =X sin2<p)1/2]} (22)

and ¢, = sin '(1/x). Since the volume of fibre
per unit length, in the fibre direction, of cell shown in
Fig. 11 is o; = ma’, and the total cell volume per unit
length of cellis v, = (D + 2a)*, then the fibre volume
fractionis V; = v;fv, = nad* /(D + 2a)*, therefore the
constant in front of the integral becomes

2nd 2nd* 2V,

0= VA (A —-VD +20f 1V
(23)
rS(.
///+_\\\ //"\\\
/ \ // \
S N 1
Y N / \ A§§ /
\\\—’// V‘ \:-‘_—//
///_-\A\\\ % ///';2/“’*
7/ 4
| A \1
N N Y J
\\\__/// \\~\__//

Figure {1 Model of the unit cell.
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Figure 12 Normalized composite resistivity as a function of tem-
perature at cryogenic temperatures in the absence of a magnetic
field (B = 0).

Elsewhere [2], we discussed the numerical integration
of Equation 20, which resulted in

rl+2/k

I(k) = % [T x dx jo”“ 16 do j:’"“h(xego) do

24

and it was shown that I(k) is a linear function in k, so
that a single repression analysis gave

I(k) = 027k (25)

To relate the conductivity to temperature, we assumed
that k£ and T could be linearly related, and a heuristic
argument showed that T = 3k, so that Equation 24
becomes

I(T) = 0.887'%® (26)

Combining Equations 23, 24, and 26 into Equation 20
with p = 0, gives

s _ Vi ~1.08
;_;—(I—Vf){l—l.77(l_Vf)T } 27

Elsewhere [2], Equation 27 was incorrectly derived
yielding results that are too high for the composite
resistivity (the resistivity ¢ = 1/0). Fig. 12 shows the
results obtained with Equation 27 for three values of
the fibre volume fraction: 0.25, 0.35, and 0.50. Below
about 10K the resistivity ratio rises very sharply. As
T - 1.697K for V; = 0.5, 9/g, — 0. In all cases, as
T increases, /o, — (1 — ¥;) as it should. It can be
seen that at T' >~ 20K, ¢/g, is close to its asymptotic
value of (1 — V)"

4. Evaluation of the limits of
integration

Now we proceed to discuss the evaluation of the limits

of integration that have to be introduced into Equa-

tion 19 for the electrical conductivity in the presence

of an electric and magnetic fields. We will distinguish

two cases: Ry < aand R, > a.

r=at 25 (B )

u-l U:L (4} s ...1/2)

Figure 13 Conditions defining 6, (r).

4.1. The case R, < a

The radius of the trajectory projected on a plane
normal to the fibre is #,(6) = R, sin §, with R, =
v Jwy, Where vp is the Fermi velocity, so that

m*ug
eB

Ry, = (28)
since w, = eB/m*. When R, < a, we have that
ro{6) < a for all values of 6. At 0 = 0, we find
v, = 0, but as @ increases, v, increases also, and
initially the B-field produces a small radius of curva-
ture with the result that at a given position r from the
centre of the fibre the trajectory does not intercept the
fibre, that is, ro(6) < (r — a)/2. When # reaches the
value 0, (r) such that r(6,,,) = (r — a)/2, then there
is one trajectory that is tangent to the fibre and it
corresponds to ¢ = —=x/2, shown in Fig. 13. For
any other ¢ and the same ry(f,,) the trajectory does
not intercept the wall. Thus, we have ry (0, ) =
Ry sin 0, = (r — a)/2 from which

. = in! r—a
B in sin (2 >

Now, for any 8 > 6, we have the shaded region
shown in Fig. 14 for the integration over the variable
¢. This region is ¢7, < ¢ < ¢, . For 6 increasing
beyond 0, up to a value § = =/2, we always obtain
a valid range of integration for ¢. When 6 = n/2, we
have v, = v and there results (rg)p = Ro.

Now the region of integration for the radius r is
from r =a to r =r,, where r, = a + 2R, or
ro = a + D/2.1f the B-field is such that 2R, < D/2,
then the integration is from a to a + 2R,, otherwise
the integration is up to @ + D/2. From Equation 28 if
R, < athen B > m*uvy/ea and B, = m*v;/ea. For
a typical B/Al metal matrix composite material,
B, = 0.237, which is a strong field. This value
assumes a fibre diameter of 0.1 mm. For any B < B,

R, > a.

(29)

Figure 14 The shaded area in the region of integration of ¢ when
rg < 4.
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sin 6

8(r) -
90 = G/Ro

af2Ry)
O min OF

(r+a)/2R.

-1

-afiR;]

It is now necessary to make an assumption concerning
the relationship between D and a. We set D < 4a which
corresponds to ¥; = —0.087. (V; = nd®/(D + 2a)* =
nd’/(4a + 2a)* = n/36 = 0.087.) Thus a reasonable
lower limit when considering that current unidirec-
tional fibre reinforced metals have a lower value
i =~ 0.20 to 0.25. We can write D = (4a)g with
g < 1. Then, if 2R, < D/2, the B-field must be
B = 4m*uvpfeD or B = m*vfea(l/q) = B /qBuin-
Consequently, if B = B,,/q, then r, = a + 2R, <
a + D/2 < 3a, and the radial integration is from
r=a to r=a-+ 2R,, and if B < B,;,/q then
re = a+ Dj2.

Finally, when R, < a, the integral expression
(Equation 19) for the electrical conductivity is

3
(1 = V)4

Jrsc r dr

} (30)
¥ — a*> — 2aR, sin 6
2R,r sin 0 } @b

which follows from Equation 4 with r, = R, sin 6,
and ¢ and " are related by the symmetry of Equation
Sy =a — Sand Y’ = 21 — (x — §).

IfB > B,./q, thenr, = a + 2R, and we note that
as B — o, R, — 0 so that r, = a, which means that
o/a, = (1 — ¥;), which is the bulk electrical conduc-
tivity value as expected since decreasing the magnetic
field causes the electron paths to have smaller and
smaller radii of curvature thereby preventing collisions
with fibres.

(I_K){l_

0

, cos’@ sin 6 d6

12
X Lin‘ H(r—a)/2Rg

% J‘¢T72(I,0) (e‘ROII’/A + e_ROw//A) dd)
-

where

b1, (1, 0) = —Sin”{

4.2. The case R, > a

There are two possibilities for ry(8). From sin 8
ro/ R, it follows that for 6 > sin~'(a/R,), ro(6) >
and for 6 < sin~'(a/R,), 7(6) < a. Letting 6,
sin"'(a/R,) then in the range 6 ,.(r) < 0 < 6,
ro(8) < a. Forthe 8, < 6 < 7/2, ry(0) > a. We also
note that with D < 4a and (r — @) < D/2, we must

a;

4008

Figure 15 Definition of ¢ in the sin 6
versus r space. a < Ry < 2a.

-
&_{Ea’; ‘OMMO.)

have 6, < 6,. Now, ris integrated from atoa + D/2
since B < B, /q.

Next, the dividing point 7(0) = 2ry(6) — a
2R, sin § — a is considered which is shown in Fig. 7.
From this figure it is readily seen thatifa < R, < 2a
then for a < 7(0) < a + D2 for 6, < 0 < =/2.
Therefore, according to the results summarized in
Fig. 7, in the range of integrationa < r < 7(6) we use

—_ 2 1
P~ a +2aRosm9} (32)

2R, sin @
or what is the same a < r < 2R, sin f/ — a, meaning
that (r + a)/2R, < sin § < 1,and ¢;_ # m/2canbe
used as given above.

Ifsin 8 < (r + a)/2R,, we use ¢r_ —7/2, then
for a given value of r between aand @ + D/2 the range
of the polar angle 8§ is determined and for a given r and
0 the range of the azimuthal angle is also determined.
This is shown in Fig. 15.

The limits for the two angular integrations are thus

% )
Jemmr) do Lm dolre(6) < 4]
8() )
+ Jeo dé Li/z doiry(0) > 4l
+ [ db

614.¢0)
1) L)T,(r,e) do[re(8) > 4]

Or_(r.0) = —sin'{

Since the expression for ¢, (r, 8), Equation 31, for
the case when r,(6) < a or ry(6) > ais the same. and
the lower limit of the integration over ¢ is the same
for the first two integrals, these two integrals can be
lumped together so that there results

b1+ ,9)

B(r) /2
famin(’) do d¢ + jg(f) do 17— (r.0) dd) (33)

When R, > 2a, then F(n/2) = 2Ry — a > 3a > a +
D/2 (for D < 4a) which is outside the region of inte-
gration for the variable r. Consequently, there is a
value of 8 for which F(8) = a + D/2. This occurs
when sin @ = (D + 4a4)/4R, < 1 which is obtained
from the condition that 2R,sin @ — a = a + D/2.
Therefore, in the range 6, < 8 < sin™'[(D + 4a)/
4R,] we find that a < 7(A) < a + D/2, and in the
range sin”~'[(D + 4a)/4R,] < 6 < w/2 we have
F(#) = a + D/2, which is outside the region of inte-
gration. Now recalling that whenever r < F(8)

J‘¢T+ (r.8)
—7/2



Figure 16 Definition of the angle «.

we have to use ¢ # n/2 for the lower limit of
the integration over ¢ and ¢;_ = —n/2 whenever
r > #(0), the following limits of integration obtain

i a0 [0 dgin(©) < a)

Hmm (r)

f’(’) ao [ 7100 4 bir(a@) > dl

I j‘sm L{D+4ajARy} do j(ﬁn,(r@) dd)[rO(O) > a]

B0 (r.8)

/2 )
dﬂf dlr,(0) > a
+ Lin—l{D+4a/4R0} 10 ¢[ 0( ) ]

Now, the integrals over r can be lumped together with
the same limits of integration on ¢ as before and the
same expression as Equation 33 is obtained.

The integral expression for the electrical conduc-
tivity, when R, > a, is

g 3 a-+Df2
— = {1-H<st - —-—— rdr
0y ( 2 { (1 — Vo)A L

=y 4q2 .
[ snTHrralRol o520 sin 0 d6

sm Hr—a/2Ry}

T+”’( ~RWIA L =RV b

f cos?f sin 0 dO
sin=1 {r+a/2Ry}

y FHM)( —Roblh | = RoViA) dq{l} 34)

b7 {r,0)

where ¢ (r, 6) and ¢ _(r, H) are given by Equations
31 and 32, respectively, and Y = o — 6, ¥ =
2r — (o + &), where a and 6 are given by Equation
12, respectively.

Now, when R, > a, the integrand in ¢ can be
approximated as follows:

e Rovih o e RoViA e*Ro!!'//\{eRoé//\ + e—2nRo//\e~R05/A}

with A < D/2 € 2a and for R, > a it follows
that R,/A > 1/2 so that exp (R,6/A) > exp (6/2)
and exp [—(Qn + R,/A] < exp[—-(2n + 6)/2] =
exp (—m) exp (6/2) < exp (8/2) < exp (RyJ6/A), and
since exp (—n) exp (§/2) < exp (6/2) we have then
exp [~ (2n + a)R,/A} < exp (R,0/A), and the term
exp (—Ryy¥’/A) in front of exp (— R,6/A) can be
dropped. This means that the dominant term is
exp (— Ryy/A). This is in agreement with Fig. 6 where
the path length for ¢’ is greater than for . Therefore,
we have for the electrical conductivity, when R, > a,

that
c 3 cat D2
— = {1 - - —— rdr
P ”{ (= Py
X [ 6“@ cos’ sin 6 df mﬂ; =R g
/2 {‘¢T+(’ ) o~ Rol@=dY/A
+ jg(r) cos’0 sin 0 df [ " te " dqb]}
(35)
where ,,(r) = sin"'[(r — a)/2R,] and B(r) =

sin”!'[(r + a)/2R,] and ¢, (r, 0) and ¢;_(r, 6) are
given by Equations 31 and 32, respectively.

When B — 0, then R, — oo and () — 0,
9(r) — 0, moreover limg,-» ¢r, = sin”'(a/r) and
limgy~w ¢r. = —sin~'(a/r) so that

lim e‘RO‘l’/A — e‘[rcos¢~(a2-rzsinzq})‘/z]/AsinH
Ry— o0

so that Equation 35 becomes

Il 6 a+D/f2
L Y0 I Lo
5 = ”{ =75

x ﬂ: cos’@ sin 6 do rm " exp {—[r cos ¢

~ (& — 7 sin*)"2)/A sin 6} d¢} (36)

When the following dimensionless variables are used;

= r/a and k = 2a/A, then Equation 36 is equi-
Valent to Equation 20, which is that derived elsewhere
[2] for the case when there is no magnetic field.

Finally, one note of caution is in order: in Equation
12 for o and 8, the function sin ™" x is defined to be the
principal branch —n/2 < sin™'x < /2. In fact, «
and J can take values greater than /2,

Consider first the case r, < a. Figure 16 shows that
whenever

I N (37

then /2 < o < n. The expression for r, obtained in
Part I of this paper [1] is

P o=

and inserting Equation 38 into Equation 37 yields

¥ + r; + 2ryrsin ¢ (38)
. Fo
sin ¢ < — " (39)

whenever 7/2 < @ < m. In this case we have to
replace a, given by Equation 12, by « —» n — o, and
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Figure 17 Definition of the angle 4.

o > mis resolved by the symmetry relation discussed
above. Now, if on the other hand sin ¢ > —ry/r, then
o < 72

Now, when considering J, Figure 17 shows that
8 > m/2 whenever @® > r2 + r}, and inserting Equa-
tion 38, the following condition is obtained

@ — P -2

sin ¢ <
¢ 2rry

(40)

If r, > a, then the same condition as shown by
Equation 39 is obtained when a > n/2, and now
& < =2 for any value of ¢.

The condition could have been inserted into Equa-
tions 30 and 35 thereby breaking down the ¢ integrals
into the appropriate ranges. Another possibility is to
try and find still more symmetry in the problem and
then consider only the cases a« < n/2 and 6 < 7/2,
using Equation 12 to determine the value of « and 6.
The most pedestrian possibility is to insert these con-
ditions manually into a program that calculates the
integrals numerically. Equation 20 for the case when
B = 0 was calculated numerically on a Hewlett
Packard HP-41C hand held calculator [2]. However,
this was not attempted for Equations 30 and 35, mainly
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because of the complexity of the limits of integration,
and no other numerical evaluations of Equations 30
and 35 were performed.

5. Conclusion

We have derived integral expressions for the electrical
conductivity of metal matrix composite materials
when a magnetic field parallel to the fibres is added to
a small electrical field also parallel to the fibres. The
electron mean free path in the bulk metal matrix is
assumed to be no greater than half the distance
between fibres. Two integral expressions are obtained
for the electrical conductivity. One expression applies
to strong magnetic fields meaning that R,/a < 1,
where R, = m*ve/eB. When B — oo (or equivalently
Ry, — 0) the integral expression reduces to the well
known conductivity value ¢ = (1 — ¥)o, for metal
matrix composite materials with non-conducting fibres.
This result is expected on physical grounds because a
very strong magnetic field produces helical trajectories
of very small radii, thereby decreasing the number of
electrons colliding with the fibres. For weak magnetic
fields, we have Ry/a > | so that the conductivity is
expressed by the sum of two integrals. When B — 0
(or R, —» ©), the electrical conductivity becomes the
integral expression obtained in our earlier results
when there is only a longitudinal electric field [2]. In
the present paper we corrected an incorrect derivation
of the composite conductivity in the absence of a
magnetic field published earlier [2].
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