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The longitudinal electrical conductivity of metal 
matrix composites at cryogenic temperature in 
the presence of a longitudinal magnetic field 
PART 2 Application of the solution to metal matrix composites 
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In this paper we use the results of Part I to derive two integral expressions for the electrical 
conductivity of metal matrix composite materials when a magnetic field, B, is added to a small 
electric field also parallel to fibres. One expression applies to strong magnetic fields meaning 
Ro/a < 1, where R 0 = m*vF/eB when the Fermi velocity is perpendicular to the magnetic field. 
When B ~ oo, the integral expression reduces to the well known conductivity value 
o- = O-o(1 - Vf), where o- 0 is the bulk matrix conductivity and Vf is the fibre volume fraction. For 
weak magnetic fields, Ro/a > 1, then the electrical conductivity is expressed by the sum of 
two integrals. When B ~ 0, the electrical conductivity reduces to the integral expression 
obtained in our earlier results when there is only a longitudinal electric field. In this paper we 
correct an incorrect derivation of the composite conductivity in the absence of a magnetic 
field published earlier [J. Mater. Sci. 21 (1986) 2409]. 

1. Introduct ion 
This is the second part of two papers on the effects of 
magnetic fields on the electrical conductivity of metal 
matrix composite (MMC) materials. The electric and 
magnetic fields are assumed to be parallel to the fibres. 
In the first paper [1], we found the solution of the 
Boltzmann equation for the case of cylindrical fibres. 
It was assumed that the scattering regions for adjacent 
fibres do not overlap. 

In the present paper we construct an integral 
expression for the electrical conductivity of MMC 
materials. This expression is based on the solution of 
the Boltzmann equation discussed before [1], and is 
shown to have the appropriate behaviour in the limit, 
that is, for very large magnetic fields the conductivity 
goes to the bulk value. This follows from the fact that 
at extremely high magnetic fields the radius of curva- 
ture of the electron trajectories is extremely small so 
that the scattering effect of the fibres is negligible. For 
very small magnetic fields, the expression for the elec- 
trical conductivity in the presence of an electric field 
only is recovered. This follows from the fact that the 
very small magnetic fields have a negligible effect upon 
the electron trajectories. 

To find the electrical conductivity we need to inte- 
grate at each point in the metal matrix over all possible 
directions of the velocity. The possible trajectories are 
those for which the electron paths emerge from the 

fibre surfaces. In essence, this will determine the limits 
of the integrations to be performed, which is the main 
task described in this paper. The integration over all 
possible velocity directions is done first by integrating 
over the azimuthal angle q5 and then over the polar 
angle 0, that the velocity makes with the fibre axis 
(z-axis). For a given magnetic field the radius of curva- 
ture of the electron trajectories in the plane transverse 
to the fibres depends on the angle 0. Then for a given 
radius the possible value of ~b are determined by tan- 
gency conditions of the circular trajectory and the 
fibre. In the next section we study these tangency 
conditions. In this paper, we use the same notation as 
we used in Part I [1]. 

2. The solution of the Bol tzmann 
equat ion and the tangency 
condit ions 

In Part I we showed that the solution of the Boltzmann 
equation, when a longitudinal magnetic field is 
present, is 

F 1 = A{1 - e -~/~°'} (I) 

where A is constant, o30 is the angular frequency of the 
electrons when the magnetic field is present and v is the 
relaxation time, and F 1 is the change in the equilib- 
rium distribution function. The expression for ~ was 
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Figure 1 Trajectory of electrons scattered from fibre surface when 
r 0 > a. (In this, and all subsequent figures unless otherwise stated, 
the magnetic field is directed into the paper.) 

found to be ~ = e - 5, where 

600 r v  r } 

• 2 2 2 + 2(Dor% + (D~F2)]l/2 sin I [(V~ "1- Vr.p)(7.) r -}- V~o 

(2a) 

6 = 

~co0[a2(v~ "F v 2) --  ( rye  --{- ½(Do(r 2 - -  a2))21'/2 ]. 
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(2b) 

where a is the fibre radius. The angle ~, is shown in 
Fig. 1. The radius o f  the electron trajectory is r0 with 

v 
r0 = - - s i n 0  (3) 

(D O 

where 0 is the angle between ~ and the z-axis [1]. 
Two cases must  be distinguished: r 0 < a and 

r 0 > a .  

[ c F ' - -  J J / r  

4'T ~,.4o) i ~ ' 

i 

Figure 3 Symmetry conditions for scattering events tangent to fibre 
surface. 

Equat ion  4 for ~bT gives qS~ = 0 at r = a ,  fa(,2r0 + Y), 
sin q5 T > 0 for a < r < [a(2r0 + a)] 1/2 and sin (~T < 0 
for [a(2r 0 + a)] i/2 < r < 2r 0 + a. At  r = 2r 0 + a 
we obtain ~bT = ~b~ = 3n/2. These results are shown 
in Fig. 4. For  r > 2to + a, the trajectory does not  
intersect the fibre and 4J = 0% and thus produces  no 
change in the bulk distr ibution funct ion (Equat ion 1). 

For  a given radial distance r, there is a relation 
between ~ corresponding to ~ = 6(Vr, % )  and tO' 
corresponding to ~5~ = 75( -%,  %).  

This is shown in Fig. 5. We have that  ~ ' =  
2 ( n -  6) - ~ , a n d ~  = ~ - 5, then, 

~ '  = 2~z - (c~ + 5)  ( 5 )  

This is a useful relation allowing us to integrate ~b 
f rom 05 = -7c/2  to q5 = ~b+ only. 

2 .1 .  C a s e  r o < a 
F r o m  Fig. 2 the tangency condit ion follows at once, 
n a m e l y ~  = (r 0 + a) 2 = r 2 + ~ + 2rrosin~b T 

1 ( r 2 -  a 2 ) a 
- + - .  ( 4 )  sin (/)T 2 rr o r 

Writing re, = (v{ + vz~f/2/(D o and sin ~bs = %/ (v~  + 

v2) ~/2 it can be checked easily that  Equat ion  4 is equi- 
valent to the vanishing o f  the numera to r  in the second 
term o f  the second Equat ion  2 (the angle 6 = 0). 

N o w  as Fig. 3 shows we can also have another  
tangency angle qS} for a given point  P in the metal such 
that sin 4/r = sin (])T and cos q~} = - cos qh~r, that  is, 
q5 x corresponds to v, > 0 and ~b-) to v~ < 0. The two 
velocities cor responding  to 4~x and qh} are symmetrical  
with respect to the vertical line passing th rough  P. The 
shaded area, shown in Fig. 3, is the region of  inte- 
grat ion for ~b. For  any angle ~b within the shaded 
region we obtain  trajectories that  originate at the fibre. 

Figure 2 Trajectory of electrons scattered from fibre surface when 
F 0 < a. 

2.2•  C a s e  r o > a 
F r o m  Fig. 6, we see that  we have two possibilities for 
the tangency condit ion:  ro = r0 _+ a or (r0 ± a) 2 = 
r 2 + r~ + 2rro sin (~T, 

sin ~bx± -- 2 _+ - (6) 
r 

This occurs when a < r < 2r o - a, because then 
sin qhX± < 1 as can be readily verified from Equat ion 6. 
When  2r 0 - a < r  < 2r 0 + a, then only qhv+ is 
allowed. As in the case o f  r 0 < a, we can also have 
another  tangency angle ~b~-+_ such that  sin ~b:r+ = 
sin ~bx± and cos qh~± = - c o s  ~bT+. Equat ion  6 
for ~bT+ gives ~bT+ = 0 at r = [a(2r0 + a)] v2, 
sin qhT+ > 0 for a < r < [a(2r 0 + a)] 1/2, sin OT+ < 0 
for [a(2r0 + a)] ~/2 < 2r0 + a. At  r = 2r 0 + a 
we have ~b~+ = ~bT+ = 3,c/2. At  r = 2 r 0 - a  we 
have sin 4~T = -  1. Consequently,  for the range 
a < r < 2r 0 - a we obtain two disconnected regions 
o f  integration for  ~b as shown in Fig. 7, and for the 
range 2r0 - a < r < 2r 0 + a there is only one 
region. Moreover ,  for  a < r 0 < 3a/2, we have that  
2r0 - a < [a(2r 0 + a)] ~/2, and for 3a/2 < r o we have 
that  [a(2ro + a)] ~/2 < 2r0 - a. All these results are 
shown in Fig. 7. 

Fig. 8 shows the disconnected regions o f  trajectories 
that originate at the fibre. The situation depicted 
corresponds to r < 2r 0 - a. Figs 9a and b show what  
happens when r = 2r0 - a and the cases a < ro < 
3a/2 and 3a/2 < to, respectively. At  this value o f  r the 
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Figure 4 R e g i o n s  o f  i n t e g r a t i o n  fo r  ~b as  the p o i n t  P m o v e s  a w a y  f r o m  the  fibre su r f ace  a n d  r 0 < a. 

two disconnected integration regions become one. 
Finally, Fig. 10 shows the general situation when 
r > 2r0 - a. 

The symmetry found for the case r0 < a also 
applies to the case when r0 > a. Therefore, we need 
only integrate q~ from - re /2  to ~bw. 

3. Composite conductivity 
Fig. 11 shows a cell in which fibres at four corners 
represent a well ordered array. This applies to metal 
matrix composite materials in which the fibres have a 
relatively large diameter (approximately 0.013 to 
0.038cm), whereas small diameter fibres (approxi- 
mately 10#m) are randomly distributed in a plane 
normal to their longitudinal axis. These array vari- 
ations are a consequence of  material processing which 
is different for large than for small fibres. In the 
following analysis we consider only well ordered fibre 
arrays as shown in Fig. 11, and an extension to other 
types of arrays has not been made. From Fig. 11, we 
note that the distance between two nearest fibres is D. 
We assume that the mean free path A for scattering in 
the bulk metal is such that A ~< D/2. In this way there 
is no overlap between adjacent scattering regions and 
we can invoke cylindrical symmetry around each fibre. 

We denote by A b the area of the bulk metal not 
affected by the scattering from nearby fibre surfaces. 
We denote by A,~ area of the scattering region centred 
on fibres and within a cell. Then we have 

Aoen = Ab -t- A~¢ + ga 2 (7) 

which assumes that A~ = re(rio - a 2) and Ao~n = 
(D + 2a) 2, where rs~ is the radius of the scattering 
region shown in Fig. 11. Now if j0 denotes the current 
density in the bulk within a scattering region then the 

Figure 5 S y m m e t r y  c o n d i t i o n s  for  s ca t t e r ing  events  t h a t  a r e  n o n -  

t angen t i a l  to  the  f ibre  sur face .  

4 0 0 4  

total current within a cell is 

= f£'° [J0 - Aj(r)]21rr dr + JoAb (8) I 

and the_ conductivity of the cell is then 

a = I/EAce u (9) 

where E is the applied longitudinal electric field. If a 0 
is the conductivity in the bulk area then j0 = a0E. It 
then follows that 

a { A s c + A b }  1 f£,cAj(r)_ 2~r dr} 
ao Acel~ Asc 4- Ab Jo 

(10a) 

Using the values for A~, A b and Aoell we obtain 

o - =  (1 - Vr){l  l (,~Aj(r) 2r~rdr} 
a0 (1 -- Vr)Acen ~a Jo 

(10b) 

Next, we introduce spherical polar coordinates in 
velocity space 

vr = v sin 0 cos q~ ( l la )  

% = v sin 0 sin q~ ( l lb )  

% = v cos 0. ( l lc)  

Then, the Equations 2 for the angles c~ and 6 that 
define ¢ via 0 = c~ - ~, become 

c~ = sin- 

{ .rcos0 } 
@2 sin20 + 2eOorv sin 0 sin ~ + ~02r2) 1/2 

(12a) 
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Figure 6 T h e  t a n g e n c y  c o n d i t i o n s  w h e n  a < r < 2r  0 - a w i th  

r o > a .  
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Figure 7 Regions of  integration for ~b (a) 
when a < r0 < 3a/2 and (b) when 

3a/2 < r o. 
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(12b) 

The solution, Equation 1, to the Boltzmann equation 
can be written in the form 

exp( 
where e is absolute value of the charge of the electron, 
E is the electric field, m* is the electron effective mass, 
r is the relaxation time, and F 1 is the change in the 
equilibrium distribution function F °, and where 
A = w and R 0 = v/COo. The radius of r0 is the circular 
path described by the electron on the plane perpen- 
dicular to the fibre or ro = R0 sin 0, and R0O is the 
length of the actual helical path described by the 
electron. 

The expression for kj(r)  is [2] 

Aj(r) = 2e(m-~-~)3fo~'v2dvfsinOdO 

where 

AF 1 vz d4~ 

(14) 

where 

eEz~?F ° ( R o ~ )  (15) 
AF~ = rn ---T ~3v--7 exp A 

and the limit of  integration for 0 and q5 integrals will 
be determined in the next section. 

The expression for J0 is given by 

('2~ 
2e fo  v2 dv ;2 sin 0 dO Jo vzF~ d~ 

eEz ~F ° F ~ -  
m *  ~v  z 

is the solution to the Boltzmann equation in the region 
outside the scattering region. Proceeding as discussed 
elsewhere [2], we have 

(~-)3(eEr~e=v2F (16, 
= 2e \ m ' J 3  

where vF is the Fermi velocity, and the expression for 
kj(r)  is [21 

a j ( r )  = 2e \ ~ - )  v~ j cos20 sin 0 dO 

x f e x p ( R ° 0 )  d ~ b A  (17) 

with A = vFr. We can calculate the ratio Aj(r)/jo 
from Equations 16 and 17, to give 

A j ( r ) -  3 f cos2Os inOdOfexp (__~)d4)  
Jo 4re 

(18)  

and substituting Equation 18 into Equation 10b, gives 

~r _ (1 _ Vr){ 1 3 f~Crd r 
o0 2(1 - gr)A~n 

x j ~ c o s 2 0 s i n 0 d 0 ~ e x p ( -  /~A~)d  4 (19) 
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Figure 8 The shaded areas are the regions o f  integration o f  ~ when 

a < r < 2 r o - a .  
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(a)  ~_= ~:lz 
Figure 9 The shaded areas are the regions of integration of 4) (a) when 
3a/2 < r o. 
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(b) ~ " -  - -  ~ /  

r = 2r  o - a a n d a  < r o < 3a/2, and(b) whenr = 2r  o - a a n d  

Equation 19 gives the electrical conductivity of 
metal matrix composite materials in the presence of  an 
electric and magnetic fields aligned parallel to the 
fibres. The next step is to compute the limits of inte- 
gration of  the integrals over 0 and (b, to which we shall 
return shortly. 

3.1. Composite conductivity without 
magnetic field 

It was shown elsewhere [2] that in the absence of a 
magnetic field Equation 19 can be written in a dimen- 
sionless form using the following variables: x -- r/a, 
k = 2a/A, 

ff 

GO 

2rca 2 
(1 - -  g )  1 --  (1 - - p ) ( 1  --  g ) a c o  H 

x ( 3 )  f :+Zlkxdx f :12 f (O)dO 

x S m"x h(x, O, 4O) d4o} (20) 

1 \ / 
~,..,..~ i 

Figure 10 T h e  s h a d e d  a r ea  in  the  r e g i o n  o f  i n t e g r a t i o n  o f  4) w h e n  

r > 2r  0 - a. 

where p is a scattering parameter to account for the 
effects of electrons scattering from fibre surfaces [2]. 
This parameter is set equal to zero because micro- 
structural examination of the fibre surface shows that 
it is irregular compared to the lattice dimensions. 
Consequently, electrons are scattered diffusively. In 
Equation 20, 

f(O) (21) 

and 

h ( x ,  O, 4o) = 

= COS20  s i n  0 

[x cos 4o 
k 

exp 2 sin 0 

- (1 -- x 2 sin24o)~/2]} (22) 

and 4omax = sin 1(l/x). Since the volume of fibre 
per unit length, in the fibre direction, of  cell shown in 
Fig. 11 is v r = rca 2, and the total cell volume per unit 
length of cell is v t = (D + 2a) 2, then the fibre volume 
fraction is Vr = vf/vt = ~a2/(D + 2a) 2, therefore the 
constant in front of  the integral becomes 

2/~a 2 2rca 2 2V r 

(1 - Vr)AceH (1 - Vr)(D + 2a)2 1 -- Vr 

/ / 

X i \ s; 

- "--" -\ Jb I I 

f ~  to,\\ / 

\ , , \~1  I t \ 
i ~ ~. 

D 

Figure 11 M o d e l  o f  the  u n i t  cell. 

(23) 
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Figure 12 Normalized composite resistivity as a function of tem- 
perature at cryogenic temperatures in the absence of a magnetic 
field (B = 0). 

Elsewhere [2], we discussed the numerical integration 
of  Equation 20, which resulted in 

I(k) = -r~3 J,~' +2/k x d x  fO/2 f(O) dO ; ~  h (xO~o) do 

(24) 

and it was shown that I(k) is a linear function in k, so 
that a single repression analysis gave 

I(k) = 0.27k -~-°8 (25) 

To relate the conductivity to temperature, we assumed 
that k and T could be linearly related, and a heuristic 
argument showed that T = 3k, so that Equation 24 
becomes 

I (T)  = 0.88T -1°8 (26) 

Combining Equations 23, 24, and 26 into Equation 20 
with p = 0, gives 

a -  ( 1 -  V f ) { 1 -  1 . 7 7 ( l ~ V f v r )  T-l°8 } (27) 
o" 0 

Elsewhere [2], Equation 27 was incorrectly derived 
yielding results that are too high for the composite 
resistivity (the resistivity Q = 1/a). Fig. 12 shows the 
results obtained with Equation 27 for three values of  
the fibre volume fraction: 0.25, 0.35, and 0.50. Below 
about  10 K the resistivity ratio rises very sharply. As 
T --+ 1.697 K for Vf = 0.5, ~/Q0 -+ ~ .  In all cases, as 
T increases, a/ao --+ (1 - Vr) as it should. It can be 
seen that at T ~ 20 K, Q/00 is close to its asymptotic 
value of(1 - Vf) i. 

4. Evaluation of the limits of 
integration 

Now we proceed to discuss the evaluation of  the limits 
of integration that have to be introduced into Equa- 
tion 19 for the electrical conductivity in the presence 
of an electric and magnetic fields. We will distinguish 
two cases: R 0 < a and R0 > a. 

Z ~rx (4"-1/z) 

Figure 13 Conditions defining 0min(r ). 

4.1. Th e  c a s e / 7 0  < a 
The radius of  the trajectory projected on a plane 
normal to the fibre is %(0) = R0 sin 0, with R0 ---- 
VF/COO, where VF is the Fermi velocity, so that 

m * v  F 
R0 = (28) 

eB 

since co o = eB/m*. When R0 < a, we have that 
%(0) < a for all values of  0. At 0 = 0, we find 
v± = 0, but as 0 increases, v± increases also, and 
initially the/~-field produces a small radius of curva- 
ture with the result that at a given position r from the 
centre of  the fibre the trajectory does not intercept the 
fibre, that is, %(0) < (r - a)/2. When 0 reaches the 
value 0min(r ) such that r0(0min) = (r - a)/2, then there 
is one trajectory that is tangent to the fibre and it 
corresponds to ~b = -z~/2, shown in Fig. 13. For 
any other ~b and the s a m e  r0(0min) the trajectory does 
not intercept the wall. Thus, we have r0(0min) = 
R o sin 0mi n = (r -- a)/2 from which 

0min = sin_ l ( _ _ ~ _ ) r  - a (29) 

Now, for any 0 > 0r~in we have the shaded region 
shown in Fig. 14 for the integration over the variable 
q~. This region is q~}+ ~< q5 ~< ~bT+. For  0 increasing 
beyond 0m~, up to a value 0 = re/2, we always obtain 
a valid range of  integration for q~. When 0 = re/2, we 
have v i  = VF and there results (r0)max = R0. 

Now the region of  integration for the radius r is 
from r = a to r = rsc, where r~c = a + 2R 0 or 
r~c = a + D/2. If  the B-field is such that 2R 0 < D/2, 
then the integration is from a to a + 2R0, otherwise 
the integration is up to a + D/2. From Equation 28 if 
Ro < a then B > m*vv/ea and Bmi . = m*vF/ea. For 
a typical B/AI metal matrix composite material, 
Bmi . = 0.23T, which is a strong field. This value 
assumes a fibre diameter of 0.1 ram. For any B < Brain, 
R0 >" a ,  

Figure 14 

r o <~ a ,  

#,+ 
The shaded area in the region of integration of q~ when 
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Figure 15 Definition of  q~ in the sin 0 
versus r space, a < R 0 < 2a, 

It is now necessary to make  an assumption concerning 
the relationship between D and a. We set D ~< 4a which 
cor responds  to Vr/> - 0 . 0 8 7 .  (Vf = 7ra2/(D + 2a) 2 = 
za2/(4a + 2a) 2 = rt/36 = 0.087.) Thus  a reasonable  
lower limit when considering that  current  unidirec- 
t ional fibre reinforced metals  have a lower value 
V r -  0.20 to 0.25. We can write D = (4a)q with 
q < 1. Then,  if 2R 0 ~< D/2, the /~-field mus t  be 
B >~ 4m*vv/eD or B >~ m*vr/ea(1/q ) = Bmin/qBmi n. 
Consequent ly ,  if  B >~ Bmin/q, then rso = a + 2Ro ~< 
a + D/2 <~ 3a, and the radial in tegrat ion is f rom 
r = a to r = a + 2/{o, and if B < Bmin/q then 
rsc = a + D/2. 

Finally, when R 0 < a, the integral expression 
(Equat ion  19) for  the electrical conduct ivi ty  is 

= (1 - Vr) {1 3 f ~  
~0 (1 -- Vf)Ace n r dr 

[-~/2 
X jsin_l[(r_a)/2Ro ] COS20  sin 0 dO 

[4r+v,0) (e_ROO/A + e_RO0,/A ) d~b} (30) 
X d n/2 

where 

~bT+(r, 0) = - - s i n - ' {  ~-a2-2aR°sinO}2RorsinO (31) 

which follows f rom Equa t ion  4 with ro = R0 sin 0, 
and O and ~,' are related by the symmet ry  of  Equa t ion  
5 : ¢  = ~ - 3 a n d O '  = 2zt - ( ~ -  ~). 

I f B  > Bmin/q, then rs~ = a + 2R0 and we note  tha t  
as B ~ ~ ,  R0 ~ 0 so tha t  r,~ = a, which means  that  
a/a0 = (1 - Vf), which is the bulk  electrical conduc-  
tivity value as expected since decreasing the magnet ic  
field causes the electron pa ths  to have  smaller  and 
smaller radii o f  curvature  thereby preventing collisions 
with fibres. 

4.2. The case Ro > a 
There  are two possibilities for  to(O). F r o m  sin 0 = 
ro/Ro it follows tha t  for  0 > s in- l (a /R0) ,  to(O) > a; 
and for  0 < s in- l (a /Ro) ,  ro(O) < a. Let t ing 00 = 
sin t(a/Ro) then in the range 0min(r ) ~< 0 <~ 00, 

ro(O) < a. For  the 00 ~< 0 ~< re/2, ro(O) > a. We also 
note  tha t  with D ~< 4a and (r - a) ~ D/2, we mus t  

4008 

have 0rain < 00. NOW, r is integrated f rom a to a + D/2 
since B < Bmi~/q. 

Next,  the dividing point  ? ( 0 ) =  2 r 0 ( 0 ) - a  = 
2R0 sin 0 - a is considered which is shown in Fig. 7. 
F r o m  this figure it is readily seen that  if  a < R0 < 2a 
then for a ~ ~(0) ~ a + D/2 for  00 ~< 0 <~ re/2. 
Therefore ,  according to the results summar ized  in 
Fig. 7, in the range o f  in tegrat ion a ~< r < ?(0) we use 

eT_(r ,  0) = - -s in  ' {  rz-a2+2aR°sinO}2RorsinO (32) 

or wha t  is the same a <~ r ~< 2R0 sin 0 - a, meaning  
that  (r + a)/2Ro < sin 0 < 1, and  q5 x_ # re/2 can be 
used as given above.  

I f  sin 0 < (r + a)/2Ro, we use q~T- = -- ~Z/2, then 
for a given value o f r  between a and a + D/2 the range 
of  the polar  angle 0 is determined and for  a given r and  
0 the range of  the az imuthal  angle is also determined.  
This is shown in Fig. 15. 

The  limits for the two angular  integrat ions are thus 

f;°2in(r) dO [ 4'x + (r'O) J +/2 d~b[ro(0) < a] 

[o(,> dO [4,++(,,o) 
+ JOo j ~/2 d4[r0(0) > a] 

[~/2 [4~+ (r.0) 
+ 3o(o dO d(o[ro(O) > a] d~x (r,0) 

Since the expression for  qST+(r, 0), Equa t ion  31, for  
the case when r~ (0) < a or  ro (0~ > a is the same. and  
the lower limit o f  the integrat ion over  q5 is the same 
for  the first two integrals, these two integrals can be 
lumped together  so that  there results 

T2 [,~+(~,o) [0(r) dO [~T+(r,0) d~b + dO dq~ (33) 
d0mi n (r) 3 - -  ~/2 d0(r) 3q~ T_ (r, 0) 

When Ro > 2a, then f(n/2) = 2R0 - a > 3a > a + 
D/2 (for D ~< 4a) which is outside the region of  inte- 
grat ion for  the var iable  r. Consequent ly ,  there is a 
value of  0 for  which ~(0) = a + D/2. This occurs 
when sin 0 = (D + 4a)/4Ro < 1 which is ob ta ined  
f rom the condi t ion that  2Ro sin 0 - a = a + D/2. 
Therefore ,  in the range 0 0 ~< 0 ~<" s in - l [ (D + 4a)/ 
4R0] we find tha t  a <~ ~(0) <~ a + D/2, and in the 
range s in - l [ (D + 4a)/4Ro] < 0 ~ 7r/2 we have 
~(0) >~ a + D/2, which is outside the region of  inte- 
grat ion.  N o w  recalling tha t  whenever  r < ~(0) 



/ /  

Figure 16 Definition of the angle a. 

we have to use q5 v_ ~ re/2 for the lower limit of 
the integration over ~b and 4~.r- = -re/2 whenever 
r > f(0), the following limits of integration obtain 

rain (r) .1--r;/2 d4)[r° (0) < a] 

+ ~00 j-~/2 dq~[r0(a) > a] 

f~i.-,{l)+4~/4e, o} dO fo~+(~,0) dqi[r0(0) > a] 
"~ 30(0 J4T-  (r,0) 

f=,,2 dO f~w+(r,o) dq~[ro(0) > a] 
+ Jsin_l{D+4a/4Ro } OOT-(r,O) 

Now, the integrals over r can be lumped together with 
the same limits of integration on ~b as before and the 
same expression as Equation 33 is obtained. 

The integral expression for the electrical conduc- 
tivity, when R0 > a, is 

cr 

o" o (1 - Vf)A~¢II' r dr 

x J~, ,(~-,/2e, o} c°s20 sin 0 dO 

f,~+(,,0~ (e_~/~ + e_~0O,/A ) d4) 
)K .] - ~/2 

(~/2 
+ ~s~.-~{~+./2~0/c°s20 sin 0 dO 

x~i'~+(~'°)(e-~/~+e-~'/A)d4)l}~4,~ _ (r, 0) (34) 

where 4)~+ (r, 0) and ~bs_ (r, 0) are given by Equations 
31 and 32, respectively, and 0 = ~ -  5, ~h' = 
2re - (e + 6), where a and 6 are given by Equation 
12, respectively. 

Now, when Ro > a, the integrand in 4) can be 
approximated as follows: 

e e,o,/a + e-~O~//a = e ~q'/A{e &a/A q- e-2~°/ae -~a/a} 

with A 4 D/2 <~ 2a and for R o > a it follows 
that Ro/A > 1/2 so that exp (Roa/A)> exp (6/2) 
and exp [ - ( 2 =  + 6)Ro/A ] <~ exp [ - ( 2 =  + 6)/2] = 
exp (-r~) exp (6/2) < exp (6/2) < exp (Roa/A), and 
since exp ( - r e ) exp  (6/2) ~ exp (6/2) we have then 
exp [-(2re + a)Ro/A] ,~ exp (~6/A), and the term 
exp ( - R o 0 ' / A )  in front of exp (-RoO/A) can be 
dropped. This means that the dominant term is 
exp ( -  Ro 0/A). This is in agreement with Fig. 6 where 
the path length for ~,' is greater than for ~. Therefore, 
we have for the electrical conductivity, when Ro > a, 

that 

(T 
3 i~ + D/2 (l - Vf) 1 (1 - Vf)Ao~ll rdr 

x L Jem~"(~ cos20 sin 0 dO j-~/2 e -R°(~-~I/A d4) 

(35) 

where 0mi,(r) = sin-l[(r - a)/2Ro] and 0(r) = 
sin-~[(r + a)/2R0] and ~bv+(r, 0) and ~s (r, 0) are 
given by Equations 31 and 32, respectively. 

When B ~ 0 ,  then R 0 ~  oo and O(r)--*O, 
O(r) ~ O, moreover limR0~= q~T+ = sin-!(a/r) and 
l i m ~ o  ~b v_ = - sin -~(a/r) so that 

l i m e  -R°~/A = e -[rc°s(~(a2"r2sin24~)b'~l/AsinO 
R0~oo 

so that Equation 35 becomes 

= (1 -- Vf) {1 6 f[+~/2 _G 
a0 (1 -- Vr)Ac~II r dr 

x ;0/2 cos20 sin O dO ;2in-'(a/~, exp {--[r cos 4) 

-- (a 2 -- fl sin24))l/2]/A sin 0} dqS} (36) 

When the following dimensionless variables are used; 
x = r/a and k = 2a/A, then Equation 36 is equi- 
valent to Equation 20, which is that derived elsewhere 
[21 for the case when there is no magnetic field. 

Finally, one note of caution is in order: in Equation 
12 for e and 6, the function sin-~x is defined to be the 
principal branch - ~ / 2  ~< sin-~x ~< re/2. In fact, 
and (f can take values greater than re/2. 

Consider first the case r e < a. Figure 16 shows that 
whenever 

2 r z > r~ + ~ (37) 

then re/2 < e < re. The expression for re obtained in 
Part I of this paper [1] is 

= r 2 + ~ + 2ror sin 4) (38) 

and inserting Equation 38 into Equation 37 yields 

r0 ,~ 
sin ~b < (39) 

r 

whenever re/2 < ~ < re. In this case we have to 
replace ~, given by Equation 12, by ~ --+ zr - ~, and 
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Figure 17 Definition of  the angle b. 

> ~ is resolved by the symmetry relation discussed 
above. Now, if on the other hand sin q5 > - ro/r, then 

< re/2. 
Now, when considering 6, Figure 17 shows that 

2 /~0, and inserting Equa- 6 > ~/2 whenever a 2 > ro + 
tion 38, the following condition is obtained 

e2 _ r a _ 2~ 
sin 4~ < (40) 

2rro 

If r0 > a, then the same condition as shown by 
Equation 39 is obtained when e > re/2, and now 

< re/2 for any value of 4~. 
The condition could have been inserted into Equa- 

tions 30 and 35 thereby breaking down the ~b integrals 
into the appropriate ranges. Another possibility is to 
try and find still more symmetry in the problem and 
then consider only the cases e < r~/2 and a < re/2, 
using Equation 12 to determine the value of e and 6. 
The most pedestrian possibility is to insert these con- 
ditions manually into a program that calculates the 
integrals numerically. Equation 20 for the case when 
B = 0 was calculated numerically on a Hewlett 
Packard HP-41C hand held calculator [2]. However, 
this was not attempted for Equations 30 and 35, mainly 

because of the complexity of the limits of integration, 
and no other numerical evaluations of Equations 30 
and 35 were performed. 

5. Conclusion 
We have derived integral expressions for the electrical 
conductivity of metal matrix composite materials 
when a magnetic field parallel to the fibres is added to 
a small electrical field also parallel to the fibres. The 
electron mean free path in the bulk metal matrix is 
assumed to be no greater than half the distance 
between fibres. Two integral expressions are obtained 
for the electrical conductivity. One expression applies 
to strong magnetic fields meaning that Ro/a < 1, 
where R 0 = m*vv/eB. When B --* oo (or equivalently 
R0 ~ 0) the integral expression reduces to the well 
known conductivity value o- = (1 - Vr)~r 0 for metal 
matrix composite materials with non-conducting fibres. 
This result is expected on physical grounds because a 
very strong magnetic field produces helical trajectories 
of very small radii, thereby decreasing the number of 
electrons colliding with the fibres. For weak magnetic 
fields, we have Ro/a > 1 so that the conductivity is 
expressed by the sum of two integrals. When B --* 0 
(or R0 --* oo), the electrical conductivity becomes the 
integral expression obtained in our earlier results 
when there is only a longitudinal electric field [2]. In 
the present paper we corrected an incorrect derivation 
of the composite conductivity in the absence of a 
magnetic field published earlier [2]. 
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